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A discussion of the nonuniqueness of physical laws and their invariance groups 
is illustrated by the construction of a physical theory (presented earlier) in which 
the law of motion of structureless and spinning particles is unified in the geometry 
of the manifold of the de Sitter group S0(3, 2). The theory has the structure of 
a non-Abelian Kaluza-Klein theory with very special properties resulting from 
the topology and noncompactness of the groups. The physical interpretation of 
the field equation is discussed. The physical requirement of equivalence of the 
interaction of spinning and orbiting systems, generally unconsidered in related 
theories, is here taken into account by the structure of the theory. The possibility 
of deviations from predictions of general relativity exists. Generalizations of the 
theoretical structure to higher dimensional groups are outlined and open the 
possibility for observations. 

1. I N T R O D U C T I O N  

The occur rence  o f  invar iance  groups  in phys ics  is a necessary  con- 
sequence  o f  s impl i fy ing  assumpt ions  tha t  we are compe l l ed  to make  in 
descr ib ing  nature .  We choose  a set o f  p h e n o m e n a  tha t  a p p e a r  to be  as lit t le 
as poss ib le  in te r fe red  with  by  the rest o f  the  wor ld  and  dec la re  them as 
f u n d a m e n t a l  and  t ruly  i n d e p e n d e n t  o f  the  rest  o f  the  world .  These  
p h e n o m e n a  usua l ly  imp ly  a (cont inuous)  mul t i tude  o f  poss ib le  configur-  
a t ions  o f  the  system cons ide red  relat ive to the  rest o f  the  world ,  and  our  
a s sumpt ions  imp ly  that  whichever  o f  these conf igura t ions  is taci t ly  a s sumed  
will not  change  the phys ica l  s i tua t ion  o f  any  o f  these two par ts  o f  the  
universe  by  even a bit.  The invar iance  g roup  appea r s  in the desc r ip t ion  o f  
the re la t ions  be tween  the different  poss ib le  conf igurat ions .  I f  a dev ia t ion  
occurs  f rom the p re sc r ibed  law, a culpr i t  has to be f o u n d  whose  in ter ference  
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causes the deviation; but even the latter is expected to obey the law. The 
necessary shortcomings of such a procedure make the importance of infinite- 
dimensional groups (e.g., those of gauge theories) for physics understand- 
able. These are able to remedy the situation when a law, which seems to 
be locally well obeyed at different spots, would lead on a global scale to 
irreconcilable consequences. A universal culprit has to be found for this 
irreconcilability who is to interfere between infinitely many such spots. In 
this way the description of nature progresses to a more general form. It is 
remarkable that constructions that involve an infinity of entities--in par- 
ticular the cont inuum--and which clearly have no place in an objective 
external physical world which is independent of our perception had to be 
introduced in order to achieve progress in the description of this world. / 

The procedure described above to arrive at fundamental laws of physics 
is clearly not unique, and alternative laws may be proposed the adoption 
of which will prove advantageous if they lead to a more economic or more 
general description. The invariance group will have to be modified in accord 
with the choice of the fundamental law. 

The outlined method, which no doubt does not just reflect the views 
held by many founders of physics, can nevertheless be illustrated by his- 
torical development and suggests a host of possibilities for (transient) 
approaches in the future) 

After gaining a better insight into the invariance properties of the 
physics of space-time, exploration of the inner degrees of  freedom of matter 
and its symmetries came to the forefront. 

Einstein gave the law of motion its global form, which geometrized 
the gravitational interaction. Two outstanding attempts were then made 
also to include the electromagnetic interaction in this geometrization: 

The first gauge theory of the units of length generalizing the Christoffel 
connection of Riemannian geometry Weyl (1922) and the five-dimensional 
metric theory of Kaluza (1921) and Klein (1926). Both approaches were 
then formally generalized from the one-dimensional invariance group of 
electrodynamics to non-Abelian groups (Yang and Mills, 1954; De Witt, 

2Such a paradoxical development for the sake of progress seems to occur again at the present 
stage, when the space-time continuum is divided into discrete elements in the lattice gauge 
theories. Although we do lack knowledge of how to find fundamental discrete elements in 
continuum physics, we have all indications that space-time has a statistical background and 
is not a good candidate (Halpern, 1973). 

3Buddhist philosophy sees the cause of all suffering in the futile clinging to features of reality 
vainly categorized by the mind. Projected on the colorless world of the physicist, this truth 
may state that the cause for suffering of physicists is the clinging to certain invariance groups. 
This may be illustrated by P. Lenard and his followers clinging to the Galilei group in their 
futile endeavor to present physics as "German" and non-Einsteinian. 
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1964). This generalization allows one to formally include the inner degrees 
of freedom of matter into the geometrization. 

Among these inner degrees of freedom of matter, the spin of elementary 
particles has the peculiar property to be convertible into angular momen- 
tum--a conventional dynamical variable in space-time. This property 
should make its geometrization of interest beyond all formal aspects. An 
early generalization of general relativity led to the idea of identifying spin 
with torsion (Cartan, 1923/24; Hehl et al., 1976; Trautmann, 1972). This 
idea was later modified to a gauge theory of the Poincar6 group, which 
results in a connection with torsion; the latter is related to the elementary 
particle spin, not, however, to angular momentum. A gauge theory of the 
group of tetrade rotations (the proper Lorentz group) has been considered 
by the present author (Halpern and Miketinac, 1970) in order to make a 
tetrade formulation of gravitational theory, suggested by Moeller, unique 
and explain C P  nonconservation. A gauge formalism of the unified spin 
rotations and electromagnetic gauge transformations of the Dirac equation 
was considered in a later paper, which also touched upon the possibility 
of a unified dual charge (Halpern, 1977a). 

A modification of the general theory of relativity where the asymptotic 
symmetry is that of the de Sitter group was already contemplated by Lubkin 
(1972) (see also Halpern, 1977b). 

A gauge theory of gravitation with the de Sitter group as gauge group 
was also suggested by Hsu (1979). The present author extended the gauge 
formalism associated with the Dirac equation to Dirac's de Sitter covariant 
spinor equation (Dirac, 1935, 1936). This resulted in a general gauge 
formalism of the de Sitter group from which I, however, intended to exclude 
torsion (Halpern, 1977a). Considering the Poincar6 group, which is a 
contraction of the de Sitter group, only as an approximation which may 
suffer the fate of other contractions of pseudo-orthogonal groups---to be 
replaced by the full group--I speculated that orbits of all one-dimensional 
subgroups of the simple de Sitter group have to appear oja an equal footing 
in the theory. The law of motion in a truly de Sitter covariant theory has 
thus to be generalized. One possibility to achieve this appeared to be the 
unification of the law of motion of structureless and spinning particles. 
Such a unification should also take account of the author's criticism of 
Cartan's theory and the Poincar6 gauge theory with their separation of spin 
and angular momentum. Following the considerations outlined at the begin- 
ning of this section, one can conclude that there is a priori no reason to 
prefer the Poincar6 group over other invariance groups, just as there is no 
reason to assume that the metric of space ought to be flat. The simple de 
Sitter group is in many respects more appealing mathematically and even 
to physicists who believe in an interrelation of all phenomena in nature. 
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The modification outlined must be performed completely if it is to be 
anything more than an artifice to arrive at conventional results in a limit. 
With the translation subgroup of the Poincar6 group also the fiat space 
background of the theory should be modified to the space of constant 
curvature of the de Sitter universe. The physical laws are then best formu- 
lated on the group of which the universe is the coset space G~ H, with H 
the subgroup S0(3, 1). Every representation of the Lie algebra of G is 
composed of the representations by functions on the group manifold. These 
thus also include representations of the subgroup that correspond to half- 
integer spin (Bopp and Haag 1950). Based on the ideas outlined at the 
beginning of  this section, I have phrased the modification of the law of 
inertia as follows: "A body moves along the timelike orbit of a (one- 
dimensional) subgroup of the de Sitter group on the de Sitter universe 
unless interfered with" (Halpern, 1984a). 

These orbits comprise, besides the timelike geodesics, also the motion 
of particles with spin. The generalization is not spectacular in case of the 
symmetric space of the de Sitter universe, where spin does not really affect 
the motion. The modifications only become observable when the law is 
generalized to the inhomogeneous metric of localized sources. 

The manifold of a semisimple group has a natural metric 3/which is 
a measure of the noncommutability of its generators. The metric g of the 
de Sitter universe is then induced in our case by the natural projection of 
3/on G/H. The metric 3' always fulfills Einstein's equations with a cosmo- 
logical member. This makes 7 and G special solutions of a generalized 
Kaluza-Klein theory. Such theories describe internal degrees of freedom 
of elementary particles with a metric in a higher dimensional Riemannian 
space. It is of particular interest to describe the spin this way because of 
its relation to angular momentum. Remarkably, even after Kaluza-Klein 
theories recently came into fashion, contributions along this line were 
lacking. 4 This is no doubt due to the great success of the Dirac spinor and 
the challenging mathematical problems of spinor theories in higher 
dimensions. It should be stressed, however, that the motivation of the present 
research is a different one: trying to arrive at a unified description of physics 
of space-time and inner degrees of freedom with the help of a symmetry group 
and its manifold. This is different from collecting the known properties of 
physics in space- time and the inner degrees of freedom and generalizing these 
to spaces of higher dimensions. 

Given this difference, e.g., a supersymmetric generalization of the 
present group covariant theory would not make much sense. 

4The work of Fukuyama (1982) apparently follows a reasoning close to the present one. In 
this interesting work spin is also suggested to be the dual charge of the gravitational field. 
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Spin has, apart from its kinship with angular momentum, other funda- 
mental properties, e.g., its relation to statistics. Instead of inserting these, 
a way should be sought to relate them in the theory. In Halpern (1984a), 
it was mentioned that there are some indications (certainly not yet more 
than just indications) that because the universe of S0(3, 2)/S0(3, 1) is 
closed in time, these properties may have their fundamentals in the theory. 
This problem is not yet ripe for discussion. The theory is also not yet in a 
stage where insertions of empirically determined constants have to be made. 
All relations on the group manifolds are purely geometrical; there is the 
hope that extended theories with a higher dimensional group G will yield 
further relations of this kind (see Section 6). How are the physical 
dimensions determined? A previous paper (Halpern, 1984b) introduced the 
dimension of length on the group manifold G itself (a measure of the 
noncommutability of the generators). The present treatment leaves the group 
manifold dimensionless. The physical dimension of length is introduced 
only with the projection on the factor space G/H, which becomes then the 
space-time of the de Sitter universe. Choosing as unit length the radius of 
this universe and considering Newton's gravitational constant as dimension- 
less, action acquires the dimension of length squared. The length determined 
by the quantum of action (Planck length) would, according to Dirac's large 
numbers hypothesis (Dirac, 1979), vary relative to the radius (or the age) 
of an expanding universe. A theory with higher dimensional group G can 
describe such a situation and obtain the large ratio at present time geometri- 
cally. The problem is not discussed here further. 

The Kaluza-Klein formulation on the group manifold was suggested 
at a time when there was not yet much interest in such structures (Halpern, 
1979). A large variety of sophisticated and adaptable mathematical models 
to describe inner degrees of freedom in higher dimensions have been 
suggested more recently (e.g., Jadczyk, 1984). Should one stick to the present 
rigid construction with disturbing features, as a noncompact group H, which 
in the Yang-Mills formulation gives rise to nondefinite energy of the gauge 
field? 

As a gauge theory the author has considered such a theory much earlier. 
The Kaluza-Klein formulation on the group manifold which emerged from 
the physical considerations outlined acquires, however, a completely 
different character due to the topology of the group manifold and the 
boundary conditions. Some of the differences show up in the vertical part 
of the Einstein equation, which appear as subsidiary conditions in the gauge 
theory; other differences result from the boundary conditions, which are 
unusual for a Yang-Mills theory. The linear connection in case of a general 
metric y consists of a Christoffel part and a torsion part (contortion), which 
is a tensor field. New exact solutions of the field equations have not yet 
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been obtained. The form of the equations and of the boundary conditions 
show, however, that physical effects modifying general relativity are due to 
the curvature of the full connection, rather than the torsion. The mentioned 
conditions keep this curvature in many cases small. The vacuum solutions 
of general relativity with cosmological members are also solutions of the 
present theory. They are associated with a large torsion tensor, which 
compensates the metric part in the curvature tensor so that the latter remains 
of cosmological smallness. The spin of elementary particles interacts in the 
theory with the full curvature and not with the Riemannian curvature. Spin 
effects predicted by general relativity are therefore expected to be in general 
much smaller in the present theory due to the compensating effects of torsion. 

A major motivation for the construction of the theory is the physical 
requirement of the equivalent interaction of spin and angular momentum. 
A spinning particle should at larger distances give rise to similar fields as, 
e.g., two structureless bodies in Keplerian motion of equal angular momen- 
tum. This requirement seems not to have been considered in other theories. 
The angular momentum of the "spin term" of the energy-momentum tensor 
is in the present theory equal to the torsion current. The mixed horizontal- 
vertical part of the Einstein equations also show that torsion has an addi- 
tional source derived from the Ricci tensor; it is, however, not established 
that this source fulfills the equivalence requirement if only structureless 
bodies exist. If the equivalence holds, the theory predicts deviations from 
relativistic motion of macroscopic spinning bodies that may become 
observable. 

It should be stressed that the theory is still in a preliminary stage. It 
lacks detailed models of spinning bodies. The mathematical foundations 
have been worked out, but the author feels this mathematical structure 
is only a first step in the exploration of the challenging possibilities that 
exist for the role of spin interactions in the universe. The next necessary 
step is seen in the modification of the rigid boundary conditions to a 
dependence on the sources in the universe. The vertical components of 
Einstein's equations in ten dimensions fulfill only a part of this task. 

2. THE GROUP MANIFOLD AND THE UNIVERSE 

We want to carry out the formulation of physical laws in terms of a 
semisimple invariance group G as completely as possible. The natural 
background for the mathematical formulation is the group manifold of G. 
Observations can only be made in space-timP Th,~ space-time manifold is 
described in terms of the left coset space G~ 11 w~m respect to a semisimple 
subgroup H of G. 
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The simplest case that we are considering is that of  the de Sitter group 
S0(4, 1) or preferably, because of its local causality properties (Philips and 
Wigner, 1968; Segal, 1976), the anti-de Sitter group S0(3, 2) for G and the 
Lorentz group S0(3, 1) for H. The resulting de Sitter and anti-de Sitter 
universes are spaces of constant curvature (generalized spheres with one 
or two imaginary coordinates). The one is spatially closed and open in 
timelike directions, the other is spatially open and closed in timelike direc- 
tions. The hope is that the modified invariance group generalizes the laws 
of motion to incorporate that of  elementary particles with spin and result 
on the macroscopic level in a generalization of  the theory of gravitation. A 
related formulation can be applied to larger pseudo-orthogonal groups to 
include other internal degrees of freedom. 

The group G may be considered in a natural way as principal fibre 
bundle P(G, ~r, H, G/H) over G/H, where ~" is the natural projection 
G-~ G/ H. 

The Cartan-Killing metric y on G 

YRS = c URvCVsv (1) 

induces a metric g on the base space G~ H which is conformally flat (metric 
of  the de Sitter universe). G is invariant under the natural left action of  G 
on G/H. The bundle of  orthonormal frames over the base space also has 
H as its group and is equivalent to P. 

The Lie algebra of G admits a Cartan decomposition into the direct 
sum of the Lie algebra b of H and its orthogonal to the Cartan-Killing 
inner product, 

(2) 
[~, ~] c ~, [L  t~] c ~, [t~, ~] ~ 

Considered as a left invariant distribution on G, ~ determines a left invariant 
connection as a principal H-bundle. This is equivalent to the connection 
on the orthonormal frame bundle of G~ H associated with the base metric 
g. The horizontal subspaces are orthogonal to the vertical subspaces with 
respect to the Cartan-Killing metric y on G. The inner product of the 
vertical subspaces differs from the Cartan-Killing inner product of G itself 
only by a conformal constant, which is 3/2 in our example. 

The Cartan-Killing metric on H is a solution of the vacuum Einstein 
equations with a cosmological constant which equals 1 in our example. On 
the base manifold the induced metric of this solution is that of  the de Sitter 
universe. The group manifold with its natural metric can thus be identified 
with the vacuum solution of a particular Kaluza-Klein theory with the 
Lorentz group as its gauge group. 
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The introduction of the dimension of length is required to relate this 
geometrical construction to physics. In a previous publication (Halpern, 
1984b) the group manifold was endowed with such a dimension; in the 
present work the dimension of length is only introduced on the factor space 
G/H on which the metric of  G is projected. On the base manifold G/H 
we keep the coordinates dimensionless and endow the components of  the 
covariant metric tensor with the dimension of length squared. 

We shall henceforth denote the dimension of G by r and the dimension 
of H by r - k. In case of  the de Sitter group r = 10 and k = 4. Capital Latin 
indices pertain in general to an orthonormal base and lowercase indices to 
a coordinate base. The Einstein summation convention for letters before 
and including k in the alphabet runs from 1 to k; for letters after k, inclusive 
of q, from r - k until r; and that for letters after q runs from 1 to r = dim G. 
This rule will be applied without further warning. 

Locally the group manifold is homeomorphic  to G/Hx H, so that 
local coordinates can be introduced on G such that the first coordinates x e 
label the points of the base space and the following r -  k coordinates label 
the points on the fibre over it. Vectors on the fibre have then no components 
in the x e direction. 

We can in such a coordinate system relate the components of  the metric 
tensor g on the base by our dimensional considerations to those on G: 

gik= a-2),ik (3) 

where a is a constant with the dimension of  a length. We use in general 
units of  length for which a = 1, which is of  the order of  the radius of  the 
de Sitter universe. Smaller units of length entail larger values of  ~. 

3. THE DEGREES OF FREEDOM OF THE FIELDS 

We have contemplated in the last section the geometry of the manifold 
of  the de Sitter group G and saw that its natural metric is a solution of 
Einstein's equations in r = 10 dimensions. The space-t ime of the de Sitter 
universe results from the natural projection on the factor space G/H. 

The equations of  motions of test bodies are also determined by Ein- 
stein's equations. Their one-dimensional solutions are the geodesics of  G. 
The projection of these on space-t ime are the orbits of  G on G/H, which 
also comprise the geodesics. We try to relate a general orbit to the motion 
of a particle with the inner degree of freedom of spin. This is indeed possible 
in the case of  the de Sitter metric: The condition has to be imposed on the 
velocity vector that its horizontal and vertical components commute [in the 
case of S0(3, 2) the square of  the horizontal and vertical parts thus have 
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the same sign]. The square of  the total spin is then related to the square of  
the vertical part. 

We come now to consider more general solutions of  the Einstein 
equations in r dimensions. We contemplate only the case where the topology 
of  the space G remains unchanged. The structure of  the principal fibre 
bundle P is also kept unaltered to ensure the uniqueness of  the projection 
on space-t ime of  the new metric on G (denoted also by y). This means we 
must still have r - k  Killing vector fields BM which commute like the base 
vectors of  the Lie algebra of  H, 

[ BM, BN] = CPMNBp (4) 

The BM satisfy B M ( y ) =  0. 
A local coordinate system can again be introduced in which only the 

last r - k  components  of  BM are different from zero. The BM form again 
the vertical vector space of P which is labeled by the last r - k coordinates. 
The new metric y determines a modified horizontal vector space which is 
orthogonal to the vertical vectors BM. One can introduce an orthonormal 
base BE. The BE and BM are in the case of  the de Sitter metric an orthonormal 
base of  left invariant vectors of  G belonging to g and I), respectively. Now 
the commutat ion relations among the BE are not prescribed, but they obey 
the relations 

[ BM, BE] = CFM~BF (4a) 

and thus fulfill the Killing conditions. The projection of the new 3' on the 
base manifold, which we denote henceforth by B, gives rise to a modified 
general Riemannian metric g on B. We have not allowed alterations of  
the topology of  G and we can therefore contemplate the connection with 
the base of  left invariant horizontal vectors AF and vertical vectors AM 
simultaneously with the new connection (and metric), which has a base of  
horizontal vectors BE and vertical vectors BM. We can even set AM = BM 
and impose the boundary condition that in the limit of  increasing spatial 
distance from a localized source the new metric y should tend toward the 
Cartan-Kil l ing metric and BE ~ AE. The new metric and connections are 
adapted to the physical conditions; the original one serves only for the 
boundary conditions, as in the bimetric theories of  space-time. 

An arbitrary connection of the linear frame bundle of  B describes a 
linear connection on B which is metric, i.e., the metric g on B is covariant 
constant with respect to the linear connection. The connection may, however, 
have nontrivial torsion if the distribution of  horizontal subspaces on G 
differ from that given by the AE. The metric g can be a general Lorentz 
metric. The degrees of  freedom of the metric y correspond on B to the 
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degrees of  freedom of the metric g and of torsion or to the metric and 
linear connection on B. 

The solutions of  Einstein's equations must obey the subsidiary condi- 
tions imposed by the choice of the BM. This can either be achieved by 
Lagrangian multipliers or by assuming the components 3',,, of the metric 
(respectively the vertical-vertical components of  the metric or of the vector 
fields B~)  as determined entities in the equations and solving for the 
remaining components as unknown variables. 

We can thus choose as the Lagrangian density in r dimensions the sum 
of a metric part  and a matter part: 

~r = ~e~ + ~7~ = 3'1/2(R _ 2 + LM) (5) 

Both parts of  ~(r) must fulfill the Killing conditions, which in suitable 
coordinates, where the x "  determine only.the points of  the fibre, simply 
state that Lf(r) does not depend on the x".  To achieve this, one can vary all 
the 3' and insert the determined components into the field equations. 

One can also express ~(r) exclusively in terms of entities defined on 
the base manifold. ~ c  may thus be expressed in terms of the metric g and 
the torsion tensor, or, as it often proves more suitable, in terms of Yang-Mills 
potentials which are related to the linear connection and, instead of the 
metric g, in terms of a system of tetrades B~ which may be considered as 
the projections of  the Be. The dependence on the points on the fibres 
corresponds then to the gauge and the choice of  the tetrade frame on B. 
The matter Lagrangian ~ u  may even require the introduction of the tetrades 
instead of the metric g (Rosenfeld, 1940). 5 

The projection of geodesics on the base does not in the generalized 
case always describe the motion of a spinning test particle correctly. This 
is not surprising, since a point particle cannot fulfill the Killing condition 
of  s We shall have to consider sources that extend over the f ibres--or  
equivalently gauge-convariant sources. 

The vertical-vertical part  of Einstein's equations are not obtained if 
the Lagrangian on G is expressed as a Lagrangian on B in terms of tetrades 
and a gauge potential only. One could ask whether they should remain in 
the theory at all, considering that the remaining equations may be interpreted 
as a consistent Einstein-Yang-Mills  theory. Our point of view is that the 
theory should be constructed as close to the geometry of the de Sitter group 
as possible and also these equations must be considered. We shall see that 

5Gravitational theories with a gauge field of the tetrade rotations have been considered much 
earlier by the author in order to make Moeller's energy-momentum complex unique and 
explain PC violation (Halpern and Miketinac, 1970) and in connection with a unified 
invariance group of the Dirac equations (Halpern, 1977a). The unique properties of the present 
theory are prescribed by the topology of the de Sitter group. 
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they impose relations between the Yang-Mills fields and the sources which 
supplement the boundary conditions. This may even be required because 
H is noncompact  with an indefinite metric. 

The Lie algebra valued connection one-form to can be expressed in a 
base B R dual to the B R a s  

tO = BMAM, AM e b (6) 

Its curvature two-form ~ is 

a =  dtO + [to, to] (6a) 

or in a coordinate frame 

~'~ik = FMikAM -= [ BMk, i -- BMi,  k -~ CMpQBPiBQk]AM (6a') 

The corresponding linear connection in an orthonormal frame has the 
components 

F ~F ---- -- BMkb kecJFM (6b) 

with be = a-l~r 'BE the orthonormal base vectors on B induced by BE. The 
R k valued soldering form 0 gives the horizontal components of  a vector on 
P with respect to the base BE: 

0 = B ~ (E = 1, . . . ,  k) (7) 

The torsion two-form is 

F e = dO + dJ ^ 0 (7a) 

with the connection of the frame bundle a;. The components 

FEik = SEk, i -- Bei, k -- CEFM[ BMiBFk -- BMk BF  ] (7a') 

In a coordinate frame the torsion tensor is then defined as 

feik = ce-l b eeFelk (7b) 

and the linear connection on B: 

r e i k = { i  ek}'4-Keik,  K e i k = l [ f  e" i k + f i  e" k + f k  e" i] (7c) 

is the sum of the Christoffel connection and the contortion tensor K. 
The components  of  the curvature tensor of  F are related to the curvature 

two-form: 

cEFMFMijBil B J.l = C E F M F M I j  -'~ Ol 2 f E F i  J 

f e m j  = FEIFrJ -- FejFII + F•DFDIF -- FEIDFDjF 

+ r % [ r %  - r %  - f ' , ,  ] (6c) 
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BMi can be related to the components of a Yang-Mills potential and the 
transformations between different local trivialisation of P to the gauge 
transformations. 

The transition to a different local trivialisation of P is equivalent to a 
coordinate transformation in r dimensions of  the special form 

X tk : X k, X t m :  ~)m(xk ,  an( .xn) )  (8) 

where the th are the composition functions of  the elements of the group G. 
On the base manifold this special set of  coordinate transformations results 
in a tetrade rotation with the (point-dependent) element a n of  H, associated 
with a gauge transformation of the "Yang-Mil ls  potentials" B M with the 
same element of  H ;  the latter undergo an inhomogeneous transformation 
due to the dependence of a m on the point of B, whereas the tetrade 
transformation is homogeneous. 

The Langrangian ~ )  [Eq. (5)], which does not depend on x m, is 
c~(k) equivalent to the Lagrangian ~ on the base manifold: 

~?(k)  _ - gl/2(R(g~- a-2+�88 (5a) 

where fMik -= FMik, but its indices are now raised with the metric g instead 
of the metric 3'. The value of the cosmological constant is changed due to 
a constant term formed out of the BM. The vertical-vertical part of  the 
original equation has to be considered as subsidiary conditions for the 
solutions. 

4. THE FIELD EQUATIONS 

The Einstein equations in r dimensions in cosmological units with a 
matter source r as right-hand member  are obtained by variation of the 
Langrangian ~(r> with respect to the metric 7" 

1 Ruv - ~3'uv(R - 2 )  = ~',~ (9) 

We write them first in an orthonormal frame, in which the horizontal, 
mixed, and vertical components can be distinguished and express their left 
side in terms of the metric g and the Yang-Mills fields f. We have now to 
distinguish between the Ricci tensor in r and in k dimensions in the different 
parts of  these equations. We no longer add labels to achieve this and use 
the same conventional symbol ReF for both the horizontal components of 
the tensor in r dimensions as well as for the tensor on the base manifold. 
The two entities are easily distinguishable because of the use of  the metric 
g and the dimensional constant a on the base. The entities at the base 
pertain to a system of the tetrades bE, which are the projection of the Be 
from a point on each fibre determined by the gauge of the Yang-Mills fields 
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fM. We have 

ReH - l y e .  (R - 2) 
2 1 M J 1 = rzH = a [ R e n  + z f  J~fM h, - s g e . ( R  - Ol--2q-10/2fMikfMik)] (9a) 

R N  E 1 ,,"MH =2TMN0/J EIIH = ~'NE (9b) 

RNI, - I T N v ( R  - 2) 

= ~'ue = a2[--�88 'k - � 8 9  q- la2 fMik fMik  - - 5 0 / - - 2 ) 1  (9c) 

Notice that gik and b ~ are not dimensionless, yet geH = YEn is. In cosmologi- 
cal units of length 0/= 1. The double bar in the second set of equations 
denotes an invariant derivative of the Yang-Mills field. 

The tensors on both sides of these equations must have vanishing Lie 
derivatives with respect to the AM and a vanishing covariant divergence. 
The vanishing of the Lie derivatives determines the transformation proper- 
ties of the components with respect to the combined gauge and tetrade 
transformations. The covariant conservation in r dimensions leads in k 
dimensions to the covariant conservation of  the spin current and the fact 
that in general only the energy-momentum tensor r of  the matter field and 
that of the Yang-Mills field together are covariantly conserved, 

(gl /2Tkh);k = a-2fMhkgl/2jkM (10a) 

(g X/2jkN ),k = jkNCNMpB P k (lOb) 

with 

gl /2  T i k =  t~.~p(k)/6gik, g l / 2 i k  M = t~.~(k) /6BMK 

These equations relate the equations of motion of sources to the field 
equations. 

The boundary conditions exclude the vanishing of the Yang-Mills 
fields. The indefinite metric of the noncompact group H allows, however, 
the vanishing of their total contribution in the energy-momentum tensor. 
They can be of  cosmological smallness in the absence of sources (e.g., the 
de Sitter universe where fMik =--CMEFAEA F everywhere). 

The Yang-Mills fields fM are expressible in terms of the tetrades and 
the contortion, out of which the fundamental geometrical entities of the 
metric tensor and the torsion tensor are constructed [see equation (7c)]. 
Variation of  the Lagrangian Sf (k) with respect to these variables results in 
the alternative form of the field equations: 

- ~ A  b~TEA = g ' / 2 [ R i k - � 8 9  ct . 4 s j h S M  , 

2 
-I-0/ ~c M "l? h 7 j  ihJMg + fik] = gl/ET~k ( l l a )  
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with 

;rig = 3[jEi, hlk +j~k, hli +jEk, ilh], h 

Halpern 

( l l b )  

j [  ik ]h = j h N c  N I K b  i lb  k K 

The term ;rik arises from the variation of the Yang-Mills part with respect 
to the tetrades. 

;r and other additional terms in the field equations relate to a part  of  
the Yang-Mills  Lagrangian which corresponds to a term quadratic in the 
Riemann tensor and to the coupling terms of the metric with the contortion 
K. 

~ ( k ) _  gl/E( g _ a - 2  + a a2fOhkfOhk ) (12) G --  

f ' jhg - , i i - { - R  Shk + K hj,k -- K gj;h + KikdKdhj  -- KiheKdkj}  (12a) 

t~ f fG t ~ G  MD c A 
= ~B~ab(--3C Ab Db ~) = - - 3 j  E~'alb (13) 

In analogy to the relations 

j k  M = OL2(gl/2fMkh)l]h , jkMiik = 0 (14) 

we can write 

jEc, a]k = a2VhfCakh, V k j  [c'~]h = 0 (14a) 

where Vh denotes the mixed covariant derivative, which acts on the first 
two indices a and c with the connection F and on the remaining indices 
with the Christoffel connection. We thus find 

j[c ,a]k = a 2 ~ _ R c a k h  h _ KCka  h h d- gcha;k ;h  "4- ( KCkdgClha  --  K C h d K d h a ) ;  h 

+ f d~kh K Chd + f aakh K Chd } (15) 

The first term with the Riemann tensor on the right due to the Bianchi 
identities equals 

--  R cakh; h = R ck. a --  R ak. c (16) 

The matter  part  of  the Lagrangian ~ (~  is constructed out of  wave 
functions ~b e and their derivatives and of the metric 3'. Totally, it must be 
independent of  the x m in any local trivialization; however, the ~b e are in 
general scalar functions of  all the variables x r. They should in case of  the 
natural metric 3' on P form such realizations of  G that the total independence 
of ~A4 on the x "  arises. In general one will also demand that the ~b ~ are 
eigenstates of  the Casimir operator of  G. They may be eigenfunctions of  
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other operators of  G. In principle all the eigenvalues that occur in representa- 
tions of G or its subgroups have local eigenfunctions on the group manifold. 
This is even true for half-integer eigenvalues of generators of the rotation 
group (Bopp and Haag, 1950). 

The four-dimensional form of this Lagrangian on the base manifold is 
again obtained by expressing it in terms of  tetrade and Yang-Mills fields 
or torsion. Horizontal derivatives become covariant derivatives with connec- 
tion F and vertical derivatives correspond to generators of the realization 
of H;  they give rise to the source of the vertical part of  Einstein's equations. 

5. ASPECTS OF PHYSICAL INTERPRETATION 

The present Kaluza-Klein theory on the manifold of the de Sitter group 
provides us with a habitat in the form of  the de Sitter universe; it differs, 
among other ways, from those Kaluza-Klein approaches, which may now 
be termed conventional, in the aspect of a cosmological member of the 
right magnitude a-2. The occurrence of a nonlinear part of the gravitational 
Lagrangian with the giant factor a 2 results, however, inevitably from these 
features within the scope of the ten-dimensional theory. The boundary 
conditions at large distances from an inhomogeneous matter distribution 
require that this term vanish there and in many cases the symmetry is such 
that it gives negligible contributions everywhere. 

The vacuum solutions of a metric theory without torsion are not affected 
by such a term. The presence of matter causes, however, difficulties in this 
special case. Such difficulties may, however, disappear when torsion is taken 
into account. The vertical part of the equations requires indeed that the 
curvature tensor f out of which the nonlinear term in the Lagrangian is 
constructed should be of cosmological smallness everywhere except at 
locations where matter is present and even there it should not be larger 
than the contribution from the source. The Riemann tensor, which is a 
constituent of  f, has no such restriction, so that the condition can only be 
fulfilled with a compensating term of the contortion tensor K. 

A large torsion field of this kind must, however, differ in its properties 
considerably from the conventional fields of physics. We first consider the 
justified distrust that the physicist may show against such a newcomer and 
consider the case where the torsion occurs only as a minor disturbance, so 
that the term resulting from the nonlinear part of the Lagrangian ~w~k) 
dominates the transverse field equations due to the factor a 2. We must thus 
forget about the vertical part of the fields equations, which acts in any case 
only as subsidiary conditions. A term that may dominate due to the factor 
a 2 if suitable sources are present is the one expressed in Section 4 by the 
covariant derivatives of the current j [equation ( l lb) ] .  
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The orbital angular momentum due to a localized weak source in the 
neighborhood of a given point can be determined approximately for this 
term and it can be shown that under our assumptions it is equal to the 
current j itself. Thus gl/2(xiT~ ~ is equivalent in our limit to jE~k~O. 
The explicit expression f o r j  given in Section 4 shows that even i f j  vanishes, 
a source of the torsion fields expressible in terms of covariant derivatives 
of the Ricci tensor remains [equation (15)]. 

The presence of torsion thus cannot in general be excluded. This may 
bring us closer to the interpretation imposed by the vertical part of the 
equations: The contribution of the torsion is comparable in absolute value 
to that of the metric and directed such that the curvature tensor f remains 
small. 

The theory thus yields a metric which is rather close to that of general 
relativity--in particular if massive sources are absent. Large torsion fields 
exist, but their contribution to the physics is not significant. The physical 
quantity that counts for effects beyond those of  general relativity is the 
curvature tensor f, which is that of the Yang-Mills field related to the metric 
by subsidiary conditions from the vertical equations. The metric and torsion 
tensors, which are well-established geometrical entities, do not enter here 
independently into the physical laws. Physical predictions beyond this 
recognition must be regarded still with the greatest caution because of the 
lack of anything more than estimates of solutions for the field equations 
and even more so for the sources. 

Elementary particles with spin should perform a motion in vacuum 
which, due to the smallness of the tensor f compared to the Riemann tensor 
(the compensating effect of torsion), will deviate correspondingly less from 
the geodesic orbits than is predicted by Papapetrou's (1951) equations. 
More difficult in view of the absence of a precise model are predictions 
about the direction of the spin axis of orbiting elementary particles. There 
can, however, be no doubt that also for this case f and not the Riemann 
tensor is the pertinent quantity to determine the effect. The axis of an 
elementary particle gyroscope should thus deviate much less from the fixed 
stars than according to general relativity. Observation of such effects may 
become possible through comparison of the state of polarization and direc- 
tion of light of complete circular polarization after its deflection by a massive 
source. However, I would prefer to consider such effects first in a higher 
dimensional theory of this kind where both spin and charge are inner degrees 
of freedom described in a unified geometrical theory. 

I see an important criterion for a correct physical theory of this kind 
in the equivalence of the interaction of spin and orbital angular momentum. 
The complex structure of  orbiting systems and their binding forces, which 
is not even solved for the two-body system in relativity, makes it still 
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impossible to prove such a conjecture in the present context. The fact that 
here spinning bodies are not the only sources of torsion makes the assump- 
tion, however, a lot more justifiable. The Stanford gyroscope experiment 
would thus be suited to obtain a decision on the physical correctness of  
the theory. 

6. REMARKS ABOUT THE EXTENSION TO THE 
C O N F O R M A L  GR OUP S  

The formalism developed here can be applied to the 15-dimensional 
conformal groups for G with a 10-dimensional de Sitter group for H. The 
base manifold B in this case is a space of constant curvature with n(n + 1)/2 
Killing vector fields. The manifold B can thus be considered as the space 
of a Kaluza-Klein  theory on which a generalized metric is introduced with 
one remaining Killing vector field, which determines the projection on a 
four-dimensional factor space which is to be the space-t ime manifold. 

One has to consider for G the conformal group S0(4, 2) or the anticon- 
formal group S0(3, 3), and for H either S0(4, 1) or S0(3, 2). One gets 
correspondingly for G/H spaces of  constant curvature which are spatially 
closed and are open in two timelike dimensions, or alternatively four open 
space dimensions and a closed timelike direction, or, in the last case, a 
spatially open space which is closed in the two timelike dimensions. The 
group S0(3, 3) is not so frequently considered as S0(4, 2), but it seems to 
play a fundamental  role in the present context. I f  one tries to unify the 
groups of spin transformations and electromagnetic gauge transformtions 
into one larger semisimple group (Halpern, 1977a, one arrives at a group 
which is locally isomorphic to S0(3, 3) and to SL(4r) and not to S0(4, 2). 
This group contains the transformations of  the two-dimensional vector space 
of complex numbers and of two-dimensional spinors. A formal geometric 
unification on the 15-dimensional group manifold of  the present theory 
with electrodynamics is not difficult to achieve, but one can hope to find 
in such a generalization a geometrical description of  the relation of  the 
fundamental  length which occurs here and the Planck length, which, accord- 
ing to the ideas of  Dirac, Einstein, and Jordan, may vary with time. Such 
problems will be discussed in detail in a subsequent publication. 
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